

- 1 A comparison of pre-Millennium eruption (946 AD) and modern temperatures
- 2 from tree rings in the Changbai Mountain, northeast Asia
- 3
- 4 Running Title: Millennial changes in temperature of Changbai Mt.
- 5
- 6 Haibo Du¹, Michael C. Stambaugh², J. Julio Camarero³, Mai-He Li^{1,4}, Dapao Yu⁵,
- 7 Shengwei Zong¹, Hong S. He^{2*}, Zhengfang Wu^{1*}
- 8 ¹ Key Laboratory of Geographical Processes and Ecological Security in Changbai
- 9 Mountains, Ministry of Education, School of Geographical Sciences, Northeast
- 10 Normal University, Changchun 130024, China
- 11 ²School of Natural Resources, University of Missouri, Columbia, Missouri, USA
- ³ Instituto Pirenaico de Ecología, IPE-CSIC, 50059 Zaragoza, Spain
- 13 ⁴ Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903
- 14 Birmensdorf, Switzerland
- 15 ⁵ CAS Key Laboratory of Forest Ecology and Management, Institute of Applied
- 16 Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- 17
- 18 Correspondence to: wuzf@nenu.edu.cn; HeH@missouri.edu

19	Abstract: High-resolution temperature reconstructions in the prior millennium are
20	limited in northeast Asia, but important for assessing regional climate dynamics. Here,
21	we present, for the first time, a reconstruction of April temperature for ~300 years
22	before the Millennium volcanic eruption in 946 AD, using tree rings of carbonized
23	logs buried in the tephra in Changbai Mountain, northeast Asia. The reconstructed
24	temperature changes were consistent with previous reconstructions in China and
25	Northern Hemisphere. The influences of large-scale oscillations (e.g., El
26	Niño-Southern Oscillation) on temperature variability were not significantly different
27	between the period preceding the eruption and that of the last ~170 years. However,
28	compared to the paleotemperature of the prior millennium, the temperature changes
29	were more complex with stronger temperature fluctuations, more frequent
30	temperature abruptions, and a weaker periodicity of temperature variance during the
31	last one and half centuries. These recent changes correspond to long-term
32	anthropogenic influences on regional climate.

33

Keywords: Carbonized logs; Changbai Mountain; dendroclimatology; Millennium
volcanic eruption; temperature reconstruction; tree rings.

36 1. Introduction

37	The observed global mean surface temperature for the decade 2011-2020 was
38	~1.09 °C higher than the average over the 1850-1900 period, reflecting the warming
39	trend since pre-industrial times (IPCC, 2021). Century-wide predictions have been
40	made based on relatively short-term observations, which bear great uncertainties
41	especially at local and regional spatial scales. Different from the short instrumental
42	records, reconstructing long-term climate variability using annually-resolved proxies
43	such as tree rings is important for analyzing the long-term variations in climate and
44	discriminating among natural and anthropogenic factors that drive climate change
45	(Wang et al., 2018). Long-term, historical dendroclimatic reconstructions of
46	temperature are essential to validate global climate models and provide important
47	inputs to understand vegetation succession and vegetation-climate relationships in the
48	region (Schneider et al., 2015).

49

Tree rings are excellent proxies for high-resolution climate reconstruction. Several millennial-scale annual climate reconstructions have been developed by multiproxy data for the globe(Consortium et al., 2013; Mann et al., 2008; Mann and Jones, 2003), North Hemisphere (Guillet et al., 2017; Moberg et al., 2005; Mann et al., 1999) or North Hemisphere extratropical regions (Schneider et al., 2015; Ljungqvist, 2010). Some millennial temperature reconstructions with very coarse temporal resolution using other proxies were also completed in northeast Asia, e.g., using varved sediment

- in Lake Sihailongwan (Chu et al., 2011). However, the millennial-scale and
 high-resolution climate reconstructions rarely include tree-ring proxies from northeast
 Asia due to limited available tree records prior to the last millennium.
- 60

61 The Changbai Mountain is the highest mountain in northeast Asia and encompasses 62 all life zones found along altitudinal gradients from temperate forests to the alpine tundra (Zhou et al., 2005). Tree radial growth is sensitive to climate change in the 63 64 Changbai Mt which has allowed building several dendroclimatic reconstructions for 65 the past centuries (Lyu et al., 2016; Zhu et al., 2009; Shao and Wu, 1997). The highest 66 peak of Changbai Mt. with origins from an intraplate stratovolcano (Tianchi volcano) 67 located on the border between China and North Korea (Sun et al., 2014). A Plinian eruption occurred around 1000 AD (well-known as the 'Millennium Eruption') with a 68 69 volcanic explosivity index of 7 based on an estimated eruptive column of ~25-35 km 70 and a total tephra volume of ~100 km³ (Wei et al., 2003; Horn and Schmincke, 2000). 71 The eruption destroyed most plants within a ~50-km-radial area, but many trees 72 buried by volcanic ash became carbonized logs (Cui et al., 1997). These carbonized 73 logs provide a unique material to reconstruct climate of Changbai Mt. prior to the 74 millennium eruption using tree-ring records as climate proxies.

75

Numerous studies have attempted dating of the Millennium Eruption (Chen et al.,
2016; Xu et al., 2013; Yin et al., 2012). Recently, this eruption has been dated to the

78	end of 946 AD using a conspicuous dating marker of the ephemeral burst of
79	cosmogenic radiation in 775 AD (Oppenheimer et al., 2017; Büntgen et al., 2014) and
80	historical documents (Yun, 2013). With this date, carbonized trees provide the
81	opportunity to reconstruct climate before 946 AD in Changbai Mt., a region where the
82	greatest increase in air temperature over China was recorded during the last century
83	(Ding et al., 2007).

84

Here, we analyze tree rings from the carbonized logs and modern trees on Changbai Mt. to reconstruct and compare temperatures between the three centuries pre-Millennium Eruption and the last two centuries (1885-2012). These temperature reconstructions can reveal the long-term regional climate dynamics in northeastern China or even Northeast Asia and allow characterizing recent features related to anthropogenic climate warming.

91

92 2. Material and methods

93 The Changbai Mt. ranges from 713 to 2691 m a.s.l., and belongs to the temperate 94 continental and mountain climate, with an annual mean temperature ranging from -7.3 95 to 4.9 °C and annual precipitation from 800 to 1800 mm (Du et al., 2018). The period 96 of cambial growth of trees is approximately May to September at low altitudes (e.g., 97 1000 m a.s.l.) and shortens to June to August at high altitudes (e.g., treeline located at 98 ~2060 m a.s.l.) (Du et al., 2021).

99	We sampled 55 carbonized trees from two nearby sites on the western slope of
100	Changbai Mt. in 2012 and 2013 (site A, 42°9' N, 127°52' E, 1025 m a.s.l., with 33
101	samples; and site B, 42°5.7' N, 127°42.4' E, 892 m a.s.l., with 22 samples) (Figure 1a,
102	b, c). Most of these trees had bark indicating the last year of tree growth was present
103	(Figure 1d). Radiocarbon dating of the wood of the outermost rings of two trees (from
104	sites A and B, respectively; Figure 1a) was conducted in the Accelerator Mass
105	Spectrometry (AMS) Laboratory at Peking University (Table 1) and indicated that
106	these trees died during the Millennium Eruption in 946 AD. Other carbonized trees
107	found and reported in previous studies were also dead in 946 AD (e.g., Oppenheimer
108	et al., 2017; Xu et al., 2013; Yin et al., 2012). Many of these carbonized tree samples
109	were not totally carbonized (Figure 1b) and showed a complete tree trunk (Figure 1c),
110	indicating that little or no transport has occurred from their original location.

112	Figure 1. (a	a) Loc	ation of the Cha	ngbai Mountain and sam	ple sites on Changbai Mt.
113	(from Google Earth Image). White squares represent sites where the carbonized logs				
114	were found	(A, W	eidongzhan; B,	Xiaoshahe). Yellow star s	shows the sampling site of
115	the moder	n for	est. White cir	rcle indicates the Dor	nggang National Datum
116	Meteorologi	ical St	ation. (b and c)	Context of carbonized lo	gs in the field. Species of
117	logs are Pir	us ko	raiensis. (d) Cel	llular characteristics of th	e outermost tree ring and
118	bark of the c	carbon	ized log shown i	n (b).	
119					
120	Table 1. Al	MS ¹⁴	C results of the	complete outermost ring	gs of two carbonized logs
121	collected fro	om We	eidongzhan (Site	A) and Xiaoshahe (Site	B) on the western slope of
122	the Changbai Mountain.				
	Lab ID	Site	AMS ¹⁴ C age	Tree-ring calibration	Tree-ring calibration
			(yr BP)*	age (AD, 1o (68.2%))	age (AD, 2σ (95.4%))
	BA150220	А	1155±20	780-790 AD (1.0%)	770-970 AD (95.4%)
				820-840 AD (7.4%)	
				860-900 AD (33.8%)	
				910-950 AD (25.9%)	
	BA121692	В	1090±20	895-920 AD (24.8%)	890-1020 AD (95.4%)
				945-990 AD (43.4%)	

* AMS ¹⁴C ages are dated at the Peking University AMS Laboratory and given in year 123

BP (years before 1950). 124

125

126	We identified the tree species of carbonized trees by analyzing microscopic
127	anatomical features of wood on three planes (cross-sectional, radial, and tangential)
128	(Figure S1). Eighteen of the 55 sample trees were Korean pine (Pinus koraiensis
129	Siebold & Zucc.). We used these trees to reconstruct the climate before the
130	Millennium Eruption (946 AD) using the current climate response of Korean pine
131	growth (Zhu et al., 2009). Prior to performing the climate response analyses, we also
132	sampled modern living Korean pines. Core samples from 27 living Korean pine trees
133	located near site A (see Figure 1a) were collected in 2013 and at 1.3 m height using a
134	Pressler increment borer.

135

136 Tree-ring width measurements and chronology development of carbonized and living 137 samples were conducted using standard dendrochronological techniques (Cook and 138 Kairiukstis, 2013). All available wood cross-sections/cores were first visually cross-dated after cutting or sanding the wood surface, and then the quality of the 139 140 cross-dating was checked using the COFECHA program (Holmes, 1983). Age 141 detrending of the ring-width series was performed by fitting negative exponential 142 curves and calculating ring-width indices through the ratio method (Fritts, 1976). 143 Then, autoregressive modeling was used to remove first-order autocorrelation and to 144 obtain pre-whitened or residual series of ring-width indices. Standardized (STD) and 145 residual (RES) growth chronologies, with or without first-order autocorrelation

146	respectively, were developed by calculating robust biweight means using the
147	ARSTAN program version 49 (Cook et al., 2017; Cook, 1985). Then, subsample
148	signal strength (SSS) was used to evaluate the suitability and reliability of chronology
149	data for climate reconstructions (Buras, 2017; Wigley et al., 1984). The SSS > 0.85
150	was used to determine the robust and maximum chronology length and to ensure the
151	reliability of the reconstructions (Figure S2). This threshold corresponded to a
152	minimum sample depth of 12 samples for the carbonized tree chronology (from 746
153	AD) and 14 samples for the living tree chronology (from 1885 AD onwards).

154

Instrumental climate data were obtained for the period 1961-2012 from the Donggang 155 National Datum Meteorological Station (42°6' N, 127°34.2' E, 851 m a.s.l., situated 156 157 15-22 km apart from the sample sites; source: China Meteorological Data Network, 158 http://data.cma.gov.cn/). We calculated the Pearson correlation coefficients between 159 both chronologies and different time-scale (monthly, seasonal and annual) climate variables (precipitation, mean temperature) to identify the main climate factors 160 161 driving tree growth. Correlations were calculated from prior April to current 162 September. Besides, to remove the trend effects, the correlation coefficients between the first-order difference series of chronology and climate variables were also 163 164 calculated to further explore their relationships. Because the RES chronology (Figure 2) showed to be more highly correlated with climate than the STD chronology 165 (Figures S3-S5), we used the RES chronology to reconstruct temperature. 166

Figure 2. Pearson correlation coefficients between the RES tree-ring chronology and monthly, seasonal and annual (a) precipitation and (b) temperature during 1961-2012. Lowercase and uppercase letter on x axis indicate the months of the previous and current year, respectively. The horizontal dotted, dash-dotted, and dashed lines represent significance levels of 0.001, 0.01, and 0.05, respectively. Bars with significant correlation are filled with red colour.

174

We used a linear regression model to reconstruct past climate from the RES tree-ring chronology. The reliability of the regression model was evaluated using split sample calibration-validation statistics whereby calibration was conducted for 1961-1986 and validation was done for 1987-2012, after which the periods were switched and the process repeated (Table 2). Model statistics included the Pearson correlation coefficient, coefficient of determination (R^2), reduction of error (RE), coefficient of efficiency (CE), Durbin-Watson text (DW), root-mean-square error (RMSE), and

- 182 mean absolute error (MAE). Any positive RE/CE is generally accepted as indicative
- 183 of reasonable skill in the reconstructions (Cook et al., 1994; Briffa et al., 1988; Fritts,
- 184 1976). The DW statistic tests the temporal autocorrelation in the residuals between
- 185 modelled and observed climate data.
- 186
- 187 **Table 2**. Calibration/verification statistics of the temperature reconstruction.

	Calibration	Verification	Calibration	Verification	Calibration
	1961-1986	1987-2012	1987-2012	1961-1986	1961-2012
Years	26	26	26	26	52
Correlation	0.51	0.66	0.66	0.51	0.59
R^2	0.26	0.43	0.43	0.26	0.34
RE		0.40		0.24	
CE		0.35		0.17	
DW	2.28	2.16	2.16	2.28	2.16
RMSE	1.43	1.44	1.35	1.52	1.41
MAE	1.13	1.13	1.01	1.19	1.10

188 Correlation, R^2 , and DW were calculated between instrumental April temperature and 189 RES tree-ring width chronology. Reduction of error (RE), coefficient of efficiency 190 (CE), root-mean-square error (RMSE) and mean absolute error (MAE) were 191 calculated between instrumental and reconstructed April temperatures.

192

- To analyze the abrupt changes in temperature between both periods, we calculated the changes in mean state of temperature reconstructions using a heuristic segmentation algorithm (the imposed minimum length of segments is 35 years) developed by Bernaola-Galván et al. (2001). This method has been widely used to determine the abrupt changes in mean state of a chronology (Gong et al., 2006). The significance of the changes was estimated by the *t* test.
- 200 Power spectrum analysis was applied to investigate the reasonable periodicities in our 201 climate reconstructions. We used the wavelet analysis with a Morlet wavelet to 202 examine the periodicity of the reconstructed series and to check how periodicity 203 changes through time (Torrence and Compo, 1998). This analysis was separately 204 performed over the two ranges of the reconstructions. These analyses were carried out 205 using the Matlab R2019b software.

206

207 3. Results and Discussion

208 3.1. Temperature reconstruction

Precipitation in all months and seasons showed no significant correlation with the RES chronology (Figure 2a). This was expected since the study area is wet, and moisture-deficits that limit plant growth are uncommon. However, mean temperature in April showed a positive and significant (p < 0.001) correlation (r = 0.59) with the RES chronology during 1961-2012 (Figure 2b), indicating that the radial growth of

214	Korean pine is primarily limited by temperature in the month preceding cambial onset.
215	Moreover, the correlation coefficients for the first-order difference series indicated
216	that chronologies still have statistically significant and strongest relationship with
217	April temperature (Figures S4-S5). These are similar to the findings for Korean pine
218	growth found in north of Changbai Mt. (Zhu et al., 2009) and more broadly across
219	northeast Asia (Wang et al., 2017). Other species in other cold regions show
220	consistent growth responses to pre-growth temperature as a limiting factor in annual
221	radial growth (e.g., Hinoki cypress (Chamaecyparis obtuse) in central Japan
222	(Yonenobu and Eckstein, 2006), Georgei fir (Abies georgei) in the southeast Tibetan
223	Plateau (Liang et al., 2009), and Scots pine (Pinus sylvestris L.) in northern Poland
224	(Koprowski et al., 2012)). A positive growth response to April temperature can occur
225	due to warming in the period prior to the growing season causing tree dormancy to
226	break early, accelerating the division and enlargement of cambial cells, and extending
227	the length of the growing season (Schweingruber, 1996). The correlation between the
228	RES chronology and spring temperature is also significant, mainly due to the effects
229	of April temperature.

230

231 The positive RE (0.40) and CE (0.35) statistics for the late verification period and 232 positive RE (0.24) and CE (0.17) statistics for the early verification period indicated 233 reasonable reconstruction skill for both compared sub-periods (Table 2). Therefore, 234 we used the full calibration period for developing April temperature model by

235	calculating the model R^2 , DW (Durbin-Watson statistic), RMSE, and MAE (Table 2).
236	The DW statistic calculated over the full calibration period (DW ₁₉₆₁₋₂₀₁₂ = 2.16, $p <$
237	0.01), achieving a value close to the optimal value of 2 which indicates no significant
238	autocorrelation in the residuals. The full tree-ring model predicting April temperature
239	was given as:
240	y = 7.38*RES - 1.79 (1);
241	where y is April temperature and <i>RES</i> is the residual tree-ring index, being the model
242	and the predictor variables significant at $p < 0.01$. This regression model accounted
243	for 34% of the variance in instrumental April temperature (Figure 3b). The
244	reconstructed April mean temperature showed decreasing trend after 2000, which was
245	different from the results of reconstructed April-July minimum temperature by Lyu et
246	al. (2016) and February-April temperature by Zhu et al. (2009). However, the
247	decreasing trend was coincident with the change in the observed April temperature
248	(Figure 3a). Therefore, the difference of the change in temperature during the last
249	decade between the temperature reconstructions may be due to seasonal diversity or
250	regional difference. Besides, although the reconstruction underestimates the extreme
251	temperatures recorded in some years (e.g., 1965 and 1998), it successfully captures
252	both high and low frequency variations of temperature variability (Figure 3a).

14

Figure 3. (a) Observed (red thin line) and reconstructed (blue thin line) annual April temperature. Heavy lines are the corresponding 13-year moving averaged temperatures. (b) Linear regression between observed and reconstructed temperatures during the period 1961-2012.

258

259 3.2. Comparisons between changes in paleoclimate and modern climate

260 Based on the regression model, we reconstructed the annual April temperature and a 261 13-year moving average for periods 652-946 AD and 1830-2012 AD (Figure 4a). Truncated periods of reconstructions where SSS is > 0.85 were 746-946 AD and 262 263 1885-2012 AD. Although our temperature reconstructions did not match well with the 264 previous temperature reconstructions using the varved sediment in Lake Sihailongwan 265 in the Changbai Mt. (Chu et al., 2011), both temperature reconstructions showed 266 coincident decreasing-increasing-decreasing variation during 850-946 AD. The lack 267 of agreement between these two proxies may be due to age model error inherent in 268 radiocarbon-dated records (Conroy et al., 2010). For regional scale, our temperature

reconstructions generally coincided with the variations of pre-millennial temperature
in China (Yang et al., 2002). Interestingly, variations in April temperature
reconstructions in both two periods in this study are similar to those observed in
summer temperature reconstructions for Northern Hemisphere (Guillet et al., 2017).
These temperature reconstructions all display warm periods in 830-850 AD, 885-895
AD, 1931-1953 AD, 1981-2000s AD, and cold periods in 1830-1840 AD and
1955-1980 AD.

Figure 4. (a) Reconstruction of April temperature anomaly (blue thin lines) for 652-946 AD and 1830-2012 AD, with a 13-year moving average (blue bold lines) for Changbai Mt. The temperature anomaly is relative to the mean during the entire period. Green, red, and magenta lines indicate standardized temperature anomalies in

281	China ("H-res") (Yang et al., 2002), the summer temperature anomalies for Northern
282	Hemisphere (Guillet et al., 2017) and temperature anomalies using the varved
283	sediment in Lake Sihailongwan in the Changbai Mt. (Chu et al., 2011), respectively.
284	Black bold lines show the changes in mean state of the April temperature
285	reconstructions. (b) Time series of standard deviation of 30-year moving window for
286	the April temperature reconstructions in this study. A given period (e.g., 900 AD)
287	represents a standard deviation in 30 years before and after that period (e.g., 886-915
288	AD).

289

290 During 746-946 AD, the standard deviation (s.d.) of reconstructed mean April temperature was 0.77 °C, whereas the standard deviation was 0.92 °C for the period 291 292 1890-2012. That is, temperature variance (standard deviation) increased 18% for 293 modern temperature in comparison to the temperature prior to the 946 AD Millennium 294 Eruption. Moreover, the 30-year moving standard deviations showed periodical change and smaller values during the pre-eruption period than those in the last 180 295 years (Figure 4b). Specifically, the 30-year moving temperature variance showed 296 significant (p < 0.05) periodicity of 50-70 years (Figure S6ab). However, there was no 297 significant periodicity of temperature variance during the last 180 years (Figure 298 299 S6cd).

300

301 There were only five periods with significant differences in mean state of temperature

302	during the last 200 years before the volcano eruption (Figure 4a). The two warm
303	periods in 830-850 AD and 885-895 AD were widely recognized as warm epochs also
304	by other temperature reconstructions for Northern Hemisphere extratropical areas
305	(e.g., Esper et al., 2002). In contrast, nine periods with significantly different mean
306	temperature states were revealed during the last ~180 years before present. Moreover,
307	only nine warm years (defined as > 1.5 s.d.; years: 756, 776, 793, 830, 833, 841, 879,
308	901, 937) and 5 cold years (defined as < 1.5 s.d.; years: 746, 896, 930, 943, 944) were
309	identified during the last 200 years before the Millennium Eruption, whereas 19 warm
310	years (1847, 1848, 1866, 1873, 1878, 1884, 1886, 1903, 1931, 1938, 1982, 1983,
311	1985, 1990, 1994, 1998, 2001, 2002, 2008) and 10 cold years (1850, 1896, 1919,
312	1932, 1951, 1976, 1996, 2003, 2006, 2011) were identified during the last 170 years
313	before present (Figure 4a).

314

315 These differences may be partly due to the anthropogenic influences since 316 approximately the beginning of the Industrial Revolution (Gong et al., 2006). For example, the probability of present-day hot extremes increased 1-1.2% relative to 317 pre-Industrial Revolution time in the region of Changbai Mt. Presently, 75% of the 318 319 moderate hot extremes occurring worldwide are attributable to climate warming, of 320 which the majority are extremely likely to be anthropogenic (Fischer and Knutti, 321 2015). Higher 30-year standard deviations during the last 180 years than the 322 pre-eruption period may also support the attribution to increased anthropogenic

- 323 influences on thermal conditions (Figure 4b).
- 324

325	Wavelet analysis indicated significant ($p < 0.05$) periodicity of ~ 4.5 years during
326	770-946 AD (Figure 5ab) and ~ 3.6 years during the last ~120 years (Figure 5cd).
327	Similar periodicities of 3 to 4 years were also found in previous analyses of
328	instrumental and reconstructed temperatures (Zhang et al., 2013; Yu et al., 2013; Chen
329	et al., 2010). Although our temperature reconstructions do not contain the significant
330	(p < 0.05) quasi-11-year periodicity (e.g., Li et al., 2011) during the entire period, the
331	significant ($p < 0.05$) quasi-11-year periodicity in 880-910 AD and the non-significant
332	quasi-11-year period in 785-810 AD and 850-870 AD were found. Significantly short
333	periodicities are typically associated with El Niño-Southern Oscillation (ENSO)
334	(Stone et al., 1998; Allan et al., 1996) and temperature in March to May in northeast
335	China is affected by ENSO (Yuan and Yang, 2012). Moreover, the changes in
336	temperature in northeast China correspond to the quasi-4-year changes in sea surface
337	temperature in the central and eastern Pacific Ocean, suggesting a close link between
338	temperature variation in northeast China and the ENSO cycle (Zhu et al., 2004).
339	These results indicate that the effects of some large-scale oscillations (e.g., ENSO) on
340	paleo- and modern- temperature continue to be important to the climate forcing in the
341	region of Changbai Mt.

Figure 5. (a, c) Wavelet power spectrum of the reconstructed April temperature from
(a) carbonized and (c) modern trees. The power has been scaled by the global wavelet
spectrum. Black contour is the 95% confidence level using a red-noise (autoregressive
lag1) background spectrum. (b, d) The global wavelet power spectrum (light blue line)
for (b) carbonized trees-based and (d) modern trees-based temperature reconstruction.
Dashed lines represent a significance of 0.05.

349

342

350 4. Conclusions

We presented a new 295-year reconstruction of April temperature before the Millennium Eruption occurred in 946 AD at Changbai Mt. using unique tree-ring proxies of carbonized logs buried in the tephra, which was compared to that of living trees growing during the last 183 years. Temperature reconstructions correspond well

355	with previous large-regional temperature reconstructions. Our results showed that,
356	although the influences of some internal variability (e.g., ENSO) on variation in
357	temperature do not change between the periods, the changes in modern temperatures
358	become more complex (e.g., increased variation and abrupt changes, and weakening
359	in periodicity of temperature variance) than those in period prior to 946 AD likely due
360	to anthropogenic influences. The present study provides tree-ring proxies for climate
361	reconstructions in northeast Asia for the last millennium. Documentation of these
362	features is important for understanding long-term regional climate dynamics and
363	analyzing the millennial-scale changes in vegetation-climate relationship in northeast
364	Asia.

365

366 Data availability

- 367 Tree-ring chronology and climate data used in this study are archived at ZENODO:
- 368 https://doi.org/10.5281/zenodo.6633856. They can also be provided by the
- 369 corresponding author.
- 370

371 Authors' contributions

- 372 H.D., Z.W., and H.S.H. conceived and led this study. Tree rings and observation data
- 373 collection was led by H.D. and S.Z. Analyses and the first draft was carried out by
- 374 H.D. and M.S., and all authors contributed to revising subsequent manuscripts.
- 375

376 Declaration of Competing Interest

- 377 The authors declare that they have no conflict of interest.
- 378

379 Acknowledgments

- 380 We acknowledge support from the Joint Fund of National Natural Science Foundation
- 381 of China (U19A2023) and the Fundamental Research Funds for the Central
- 382 Universities (2412020FZ002).

383 References

- 384 Allan, R., Lindesay, J., and Parker, D.: El Niño southern oscillation & climatic
- 385 variability, CSIRO Publishing, Collingwood, 405 pp, 1996.
- 386 Bernaola-Galván, P., Ivanov, P. C., Nunes Amaral, L. A., and Stanley, H. E.: Scale
- 387 Invariance in the Nonstationarity of Human Heart Rate, Phys. Rev. Lett., 87,
- 388 168105, https://doi.org/10.1103/PhysRevLett.87.168105, 2001.
- 389 Briffa, K. R., Jones, P. D., Pilcher, J. R., and Hughes, M. K.: Reconstructing Summer
- 390 Temperatures in Northern Fennoscandinavia Back to A.D. 1700 Using
- 391 Tree-Ring Data From Scots Pine, Arct. Alp. Res., 20, 385-394,

392 https://doi.org/10.1080/00040851.1988.12002691, 1988.

- 393 Büntgen, U., Wacker, L., Nicolussi, K., Sigl, M., Güttler, D., Tegel, W., Krusic, P. J.,
- 394 and Esper, J.: Extraterrestrial confirmation of tree-ring dating, Nat. Clim.
- 395 Change, 4, 404, https://doi.org/10.1038/nclimate2240, 2014.
- 396 Buras, A.: A comment on the expressed population signal, Dendrochronologia, 44,

397 130-132, https://doi.org/10.1016/j.dendro.2017.03.005, 2017.

- 398Chen, S., Shi, Y., Guo, Y., and Zheng, Y.: Temporal and spatial variation of annual399mean air temperature in arid and semiarid region in northwest China over a400recent46yearperiod,J.AridLand,2,87-97,
- 401 https://doi.org/10.3724/SP.J.1227.2010.00087, 2010.
- 402 Chen, X.-Y., Blockley, S. P. E., Tarasov, P. E., Xu, Y.-G., McLean, D., Tomlinson, E.
- 403 L., Albert, P. G., Liu, J.-Q., Müller, S., Wagner, M., and Menzies, M. A.:

404	Clarifying the distal to proximal tephrochronology of the Millennium (B-Tm)			
405	eruption, Changbaishan Volcano, northeast China, Quat. Geochronol., 33,			
406	61-75, https://doi.org/10.1016/j.quageo.2016.02.003, 2016.			
407	Chu, G., Sun, Q., Wang, X., Liu, M., Lin, Y., Xie, M., Shang, W., and Liu, J.:			
408	Seasonal temperature variability during the past 1600 years recorded in			
409	historical documents and varved lake sediment profiles from northeastern			
410	China, The Holocene, 22, 785-792,			
411	https://doi.org/10.1177/0959683611430413, 2011.			
412	Conroy, J. L., Overpeck, J. T., and Cole, J. E.: El Niño/Southern Oscillation and			
413	changes in the zonal gradient of tropical Pacific sea surface temperature over			
414	the last 1.2 ka, PAGES News, 18, 32-34, 2010.			
415	Cook, E. R.: A time series analysis approach to tree-ring standardization, Graduate			
416	College, University of Arizona, Tucson, 1985.			
417	Cook, E. R. and Kairiukstis, L. A.: Methods of Dendrochronology: Applications in the			
418	Environmental Sciences, Springer Netherlands, 394 pp,			
419	https://doi.org/10.1007/978-94-015-7879-0, 2013.			
420	Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in			
421	dendroclimatology: A review and comparison of two techniques, Int. J.			
422	Climatol., 14, 379-402, https://doi.org/10.1002/joc.3370140404, 1994.			
423	Cook, E. R., Krusic, P. J., Peters, K., and Holmes, R. L.: Program ARSTAN (version			
424	49), Autoregressive tree-ring standardization program. Tree-Ring Laboratory			

425	of Lamont–Doherty Earth Observatory, USA, 2017.
-----	---

- 426 Cui, Z., Zhang, S., and Tian, J.: The study on volcanic eruption and forest
- 427 conflagration since holocene quaternary in Changbai Mt., Geogr. Res., 16,
 428 92-97, 1997.
- 429 Ding, Y., Ren, G., Zhao, Z., Xu, Y., Luo, Y., Li, Q., and Zhang, J.: Detection, causes
- and projection of climate change over China: An overview of recent progress,
 Adv. Atmos. Sci., 24, 954-971, https://doi.org/10.1007/s00376-007-0954-4,
- 432 2007.
- 433 Du, H., Li, M.-H., Rixen, C., Zong, S., Stambaugh, M., Huang, L., He, H. S., and Wu,
- Z.: Sensitivity of recruitment and growth of alpine treeline birch to elevated
 temperature, Agric. For. Meteorol., 304-305, 108403,
 https://doi.org/10.1016/j.agrformet.2021.108403, 2021.
- 437 Du, H., Liu, J., Li, M.-H., Büntgen, U., Yang, Y., Wang, L., Wu, Z., and He, H. S.:
- Warming-induced upward migration of the alpine treeline in the Changbai
 Mountains, northeast China, Global Change Biol., 24, 1256-1266,
 https://doi.org/10.1111/gcb.13963, 2018.
- 441 Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-Frequency Signals in Long
- 442 Tree-Ring Chronologies for Reconstructing Past Temperature Variability,
- 443 Science, 295, 2250-2253, https://doi.org/10.1126/science.1066208, 2002.
- 444 Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global occurrence of
- 445 heavy-precipitation and high-temperature extremes, Nat. Clim. Change, 5, 560,

- 446 https://doi.org/10.1038/nclimate2617, 2015.
- 447 Fritts, H. C.: Tree rings and climate, Elsevier, New York1976.
- 448 Gong, Z.-Q., Feng, G.-L., Wan, S.-Q., and Li, J.-P.: Analysis of features of climate
- 449 change of Huabei area and the global climate change based on heuristic
- 450 segmentation algorithm, Acta Phys. Sinica, 55, 477,
- 451 https://doi.org/10.7498/aps.55.477, 2006.
- 452 Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P., Eckert, N.,
- 453 Sielenou, P. D., Daux, V., Churakova, Olga V., Davi, N., Edouard, J.-L.,
- 454 Zhang, Y., Luckman, Brian H., Myglan, V. S., Guiot, J., Beniston, M.,
- 455 Masson-Delmotte, V., and Oppenheimer, C.: Climate response to the Samalas
- 456 volcanic eruption in 1257 revealed by proxy records, Nat. Geosci., 10, 123,
- 457 https://doi.org/10.1038/ngeo2875, 2017.
- 458 Holmes, R. L.: Computer-assisted quality control in tree-ring dating and measurement,
- 459 Tree-Ring Bull., 43, 69-78, 1983.
- 460 Horn, S. and Schmincke, H.-U.: Volatile emission during the eruption of Baitoushan
 461 Volcano (China/North Korea) ca. 969 AD, Bull. Volcanol., 61, 537-555,
 462 https://doi.org/10.1007/s004450050004, 2000.
- 463 IPCC: Summary for Policymakers. In: Climate Change 2021: The Physical Science
- 464 Basis. Contribution of Working Group I to the Sixth Assessment Report of the
- 465 Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A.
- 466 Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I.

467

468	Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press.				
469	In Press, 2021.				
470	Koprowski, M., Przybylak, R., Zielski, A., and Pospieszyńska, A.: Tree rings of Scots				
471	pine (Pinus sylvestris L.) as a source of information about past climate in				
472	northern Poland, Int. J. Biometeorol., 56, 1-10,				
473	https://doi.org/10.1007/s00484-010-0390-5, 2012.				
474	Li, Z., Shi, C. M., Liu, Y., Zhang, J., Zhang, Q., and Ma, K.: Summer mean				
475	temperature variation from 1710-2005 inferred from tree-ring data of the				
476	Baimang Snow Mountains, northwestern Yunnan, China, Clim. Res., 47,				
477	207-218, https://doi.org/10.3354/cr01012, 2011.				
478	Liang, E. Y., Shao, X. M., and Xu, Y.: Tree-ring evidence of recent abnormal warming				
479	on the southeast Tibetan Plateau, Theor. Appl. Climatol., 98, 9-18,				

Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T.

480 https://doi.org/10.1007/s00704-008-0085-6, 2009.

- 481 Ljungqvist, F. C.: A new reconstruction of temperature variability in the extra 482 tropical northern hemisphere during the last two millennia, Geogr. Ann. Ser. A
 483 Phys. Geogr., 92, 339-351, https://doi.org/10.1111/j.1468-0459.2010.00399.x,
 484 2010.
- 485 Lyu, S., Li, Z., Zhang, Y., and Wang, X.: A 414-year tree-ring-based April–July
 486 minimum temperature reconstruction and its implications for the extreme
 487 climate events, northeast China, Clim. Past, 12, 1879-1888,

- 488 https://doi.org/10.5194/cp-12-1879-2016, 2016.
- 489 Mann, M. E. and Jones, P. D.: Global surface temperatures over the past two millennia,
- 490 Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL017814, 2003.
- 491 Mann, M. E., Bradley, R. S., and Hughes, M. K.: Northern hemisphere temperatures
- 492 during the past millennium: inferences, uncertainties, and limitations, Geophys.
- 493 Res. Lett., 26, 759-762, 1999.
- 494 Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S.,
- 495 and Ni, F.: Proxy-based reconstructions of hemispheric and global surface
- 496 temperature variations over the past two millennia, P. Natl. Acad. Sci. USA,

497 105, 13252, https://doi.org/10.1073/pnas.0805721105, 2008.

- Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlén, W.:
 Highly variable Northern Hemisphere temperatures reconstructed from lowand high-resolution proxy data, Nature, 433, 613-617,
- 501 https://doi.org/10.1038/nature03265, 2005.
- 502 Oppenheimer, C., Wacker, L., Xu, J., Galván, J. D., Stoffel, M., Guillet, S., Corona, C.,
- 503 Sigl, M., Di Cosmo, N., Hajdas, I., Pan, B., Breuker, R., Schneider, L., Esper,
- 504 J., Fei, J., Hammond, J. O. S., and Büntgen, U.: Multi-proxy dating the
- 505 'Millennium Eruption' of Changbaishan to late 946 CE, Quat. Sci. Rev., 158,
- 506 164-171, https://doi.org/10.1016/j.quascirev.2016.12.024, 2017.
- 507 PAGES 2k Consortium: Continental-scale temperature variability during the past two
- 508 millennia, Nat. Geosci., 6, 339, https://doi.org/10.1038/ngeo1797, 2013.

509	Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J. S., Myglan, V. S., Kirdyanov				
510	A. V., and Esper, J.: Revising midlatitude summer temperatures back to				
511	A.D. 600 based on a wood density network, Geophys. Res. Lett., 42,				
512	4556-4562, https://doi.org/10.1002/2015GL063956, 2015.				
513	Schweingruber, F. H.: Tree rings and environment: dendroecology, Paul Haupt AG				
514	Bern, Berne, 609 pp, 1996.				
515	Shao, X. M. and Wu, X. D.: Reconstruction of climate change on Changbai Mountain,				
516	northeast China using tree-ring data, Quaternary Science, 1, 76-85 (in Chinese				
517	with English abstract), 1997.				
518	Stone, L., Saparin, P. I., Huppert, A., and Price, C.: El Niño Chaos: The role of noise				
519	and stochastic resonance on the ENSO cycle, Geophys. Res. Lett., 25, 175-178,				
520	https://doi.org/10.1029/97GL53639, 1998.				
521	Sun, C., You, H., Liu, J., Li, X., Gao, J., and Chen, S.: Distribution, geochemistry and				
522	age of the Millennium eruptives of Changbaishan volcano, Northeast China —				
523	A review, Frontiers of Earth Sci., 8, 216-230,				
524	https://doi.org/10.1007/s11707-014-0419-x, 2014.				
525	Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, Bull. Am.				
526	Meteorol. Soc., 79, 61-78,				
527	https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2,				
528	1998.				
529	Wang, J., Yang, B., Osborn, T. J., Ljungqvist, F. C., Zhang, H., and Luterbacher, J.:				

530	Causes of East	st Asian Temper	rature Multideca	dal Variabilit	y Since 850 CE,
531	Geophys.	Res.	Lett.,	45,	13,485-13,494,
532	https://doi.org/	/10.1029/2018GI	2080725, 2018.		
533	Wang, X., Zhang, M	., Ji, Y., Li, Z.,	Li, M., and Zhai	ng, Y.: Temp	erature signals in
534	tree-ring widt	h and divergen	t growth of Ko	rean pine re	sponse to recent
535	climate wa	rming in r	ortheast Asia	, Trees,	31, 415-427,
536	https://doi.org/	/10.1007/s00468	-015-1341-x, 201	7.	
537	Wei, H., Sparks, R. S	. J., Liu, R., Fan	, Q., Wang, Y., H	Iong, H., Zha	ang, H., Chen, H.,
538	Jiang, C., Dor	ng, J., Zheng, Y.	, and Pan, Y.: Th	ree active vo	olcanoes in China
539	and their	hazards, J.	Asian Ear	th Sci.,	21, 515-526,
540	https://doi.org/	/10.1016/S1367-	9120(02)00081-0	, 2003.	
541	Wigley, T. M. L., Brit	ffa, K. R., and Jo	ones, P. D.: On th	e Average Va	alue of Correlated
542	Time Series, v	with Applications	s in Dendroclima	tology and H	lydrometeorology,
543	J. Clin	n. Appl.	Meteorol	., 23,	, 201-213,
544	https://doi.org/	/10.1175/1520-04	450(1984)023<02	201:OTAVOC	C>2.0.CO;2,
545	1984.				
546	Xu, J., Pan, B., Liu,	T., Hajdas, I., Zł	nao, B., Yu, H., I	Liu, R., and Z	Zhao, P.: Climatic
547	impact of the	Millennium eru	ption of Changba	aishan volcar	10 in China: New
548	insights from	high-precision ra	diocarbon wiggle	e-match datir	ıg, Geophys. Res.
549	Lett., 40, 54-5	9, https://doi.org	/10.1029/2012GL	.054246, 201	3.

550 Yang, B., Braeuning, A., Johnson, K. R., and Shi, Y.: General characteristics of

- 551 temperature variation in China during the last two millennia, Geophys. Res.
- 552 Lett., 29, L014485, https://doi.org/10.1029/2001GL014485, 2002.
- 553 Yin, J., Jull, A. J. T., Burr, G. S., and Zheng, Y.: A wiggle-match age for the
- 554 Millennium eruption of Tianchi Volcano at Changbaishan, Northeastern China,
- 555 Quat. Sci. Rev., 47, 150-159, https://doi.org/10.1016/j.quascirev.2012.05.015,
- 556 2012.
- Yonenobu, H. and Eckstein, D.: Reconstruction of early spring temperature for central
 Japan from the tree-ring widths of Hinoki cypress and its verification by other
 proxy records, Geophys. Res. Lett., 33, L10701,
 https://doi.org/10.1029/2006GL026170, 2006.
- Yu, S., Yuan, Y., Wei, W., Chen, F., Zhang, T., Shang, H., Zhang, R., and Qing, L.: A
 352-year record of summer temperature reconstruction in the western
 Tianshan Mountains, China, as deduced from tree-ring density, Quat. Res., 80,
- 564 158-166, https://doi.org/10.1016/j.yqres.2013.05.005, 2013.
- Yuan, Y. and Yang, S.: Impacts of Different Types of El Niño on the East Asian
 Climate: Focus on ENSO Cycles, J. Clim., 25, 7702-7722,
 https://doi.org/10.1175/JCLI-D-11-00576.1, 2012.
- 568 Yun, S.-H.: Volcanological Interpretation of Historical Eruptions of Mt. Baekdusan
- 569 Volcano, J. Korean Earth Sci. Soc., 34, 456-469, 2013.
- 570 Zhang, T., Yuan, Y., Liu, Y., Wei, W., Zhang, R., Chen, F., Yu, S., Shang, H., and Qin,
- 571 L.: A tree-ring based temperature reconstruction for the Kaiduhe River

572	2 watershed, northwestern China, sin	ice A.D. 168	0: Linkages to the
573	3 North Atlantic Oscillation, Q	Quat. Int.,	311, 71-80,
574	4 https://doi.org/10.1016/j.quaint.2013.07	.026, 2013.	
575	Zhou, Y., Liu, L., Zhang, M., and Yu, J.: Medic	cinal plant resou	rces and their diversity
576	5 in Changbai Mountain National Nature	e Reserve, Scier	ntia Silvae Sinicae, 41,
577	7 57-64, 2005.		
578	Zhu, H. F., Fang, X. Q., Shao, X. M., and Yin,	Z. Y.: Tree ring	s-based February-April
579	e temperature reconstruction for Changba	i Mountain in N	Northeast China and its
580) implication for East Asian winter	monsoon, Clir	n. Past, 5, 661-666,
581	https://doi.org/10.5194/cp-5-661-2009, 2	2009.	
582	2 Zhu, Y., Chen, L., and Yu, R.: Analysis of	the relationsh	ip between the China
583	anomalous climate variation and ENSC	cycle on the q	uasi-four-year scale, J.
584	4 Trop. Meteorol.,	19,	345-356,
585	5 https://doi.org/10.3969/j.issn.1006-8775	.2004.01.001, 2	004.